

Characteristics and Burden of FOP

WHAT IS FIBRODYSPLASIA OSSIFICANS PROGRESSIVA?

Short, broad femoral necks

impairment

HETEROTOPIC OSSIFICATION

thumbs

Heterotopic ossification (HO) transforms soft and connective tissues into ribbons, sheets, and plates of extra bone throughout the body¹

QUALITY OF LIFE

FOP is a severely disabling disease associated with decreased quality of life (QoL). Pain severity is significantly negatively correlated with:⁷

DIAGNOSIS AND MISDIAGNOSIS

Misdiagnosis and delayed diagnosis can contribute to the accumulation of disability in patients living with FOP¹²

is the mean time for patients to receive a diagnosis after symptom onset...¹³

Diagnosis takes longer in patients who have atypical FOP compared with classic FOP¹³

- - Atypical FOP Mean age at diagnosis: 18.6 years

Classic FOP Mean age at diagnosis: 7.0 years

FOP is misdiagnosed in slightly over half of individuals (52.5%)¹³

A 2001–2002 survey of IFOPA members found that, as a result of FOP misdiagnosis:¹²

68%

received inappropriate therapies

67%

of respondents underwent unnecessary biopsies

49%

reported permanent loss of mobility resulting from invasive medical interventions that caused post-traumatic ossification

TREATMENT

There are currently no effective treatments to prevent HO in FOP; therapeutic approaches are limited to symptom management and flare-up prevention¹⁴

Consequently, there is a critical unmet need for disease-modifying therapies for patients living with FOP

REFERENCES

1. Kaplan FS et al. J Bone Joint Surg Am 1993;75(2):220–230; 2. Connor JM & Evans DAP. J Bone Joint Surg Br 1982;64(1):76–83; 3. Baujat G et al. Orphanet J Rare Dis 2017;12(1):123; 4. Zhang W et al. Bone 2013;57(2):386–391; 5. Kaplan FS et al. Hum Mutat 2009;30(3):379–390; 6. Pignolo RJ et al. J Bone Miner Res 2016;31(3):650–656; 7. Peng K et al. JBMR Plus 2019;3(8):e10181; 8. Pignolo RJ et al. Bone 2020;134:115274; 9. Kaplan FS et al. J Bone Joint Surg Am 2010;92(3):686–691; 10. The World Bank. Available at: https://data.worldbank.org/indicator/SP.DYN.LEOO.IN?locations=US [Accessed March 2021]; 11. The World Bank. Available at: https://data.worldbank.org/indicator/SP.DYN.LEOO.IN?locations=EU [Accessed March 2021]; 12. Kitterman JA et al. Pediatrics 2005;116(5): e654–e661;13. Sherman LA et al. Annual Meeting of the American Society for Bone and Mineral Research, 11–15 September 2020; 14. Kaplan FS et al. Proc Int Clin Counc FOP 2019;1:1-111.

Mechanism of Disease in FOP

Bone morphogenetic proteins (BMPs) are a group of signaling molecules with a role in bone and cartilage formation. BMPs signal through cell surface receptor complexes that consist of two distinct transmembrane serine/threonine kinase receptors, Type 1 and Type 2¹

1. In the absence of mutations, BMPs bind to the Activin Receptor-Like Kinase 2 (ALK-2)/Activin A Receptor Type 1 (ACVR1) receptor, which induces heterodimerization with the Type 2 receptor²

bone forming genes³

5. Bone formation

CELL SIGNALING IN FIBRODYSPLASIA OSSIFICANS PROGRESSIVA

Almost all patients with fibrodysplasia ossificans progressiva (FOP) carry the same gain-of-function ALK2/ACVR1 gene mutation, R2O6H⁴

DISEASE PATHOGENESIS

Signaling molecules of the transforming growth factor (TGF)- β superfamily, including BMPs and Activin A, bind to the ALK2/ACVR1 receptor⁵

Activin A regulates processes such as myogenesis, skeletogenesis, and muscle and bone metabolism and repair⁶⁻⁹

In FOP:

The R2O6H mutation alters ALK2/ACVR1 response to Activin A¹⁰

Activin A binding in FOP leads to phosphorylation of Smad, causing new bone formation¹⁰

Soft and connective tissues are replaced by ribbons, sheets, and plates of heterotopic bone through a process of endochondral ossification that leads to an accumulation of bone and progressive restriction of movement^{11,12}

REFERENCES

Shen Q et al. J Clin Invest 2009;119(11):3462-3472; 2. Attisano L et al. Cell 1993:75(4):671-680; 3. Nishimura R et al. J Biol Chem. 1998;273(4):1872-1879;
Shore EM et al. Nat Genet 2006:38(5):525-527; 5. Olsen OE et al. Cell Commun Signal 2015;13:27; 6. Trendelenburg AU et al. Skelet Muscle 2012;2(3); 7. Yaden BC et al. Am J Pathol 2014;184(4):1152-1166; 8. Merino R et al. Development 1999;126:2161-2170; 9. Eijken M et al. FASEB J 2007;21:2949-2960; 10. Hatsell SJ et al. Sci Transl Med 2015;7(303):303ra137; 11. Kaplan FS et al. Clin Orthop Relat Res 1994;304:238-247; 12. Kaplan FS et al. J Bone Joint Surg 1993;75(2):220-230; 13. Gannon FH et al. Hum Pathol 2001;32(8):842-848; 14. Lounev Y et al. J Bone Joint Surg Am 2009;91(3):652-663; 15. Gannon FH et al. Clin Orthop Relat Res 1998;346:19-25.